In Situ Re-endothelialization via Multifunctional Nanoscaffolds

نویسندگان

  • Lee-Chun Su
  • Hao Xu
  • Richard T. Tran
  • Yi-Ting Tsai
  • Liping Tang
  • Subhash Banerjee
  • Jian Yang
  • Kytai T. Nguyen
چکیده

The endothelium monolayer lining in the luminal side of blood vessels provides critical antithrombotic functions. Damage to these cells will expose a highly thrombogenic subendothelium, which leads to pathological vascular changes. Using combined tissue engineering and ligand-receptor targeting strategy, we developed a biodegradable urethane-doped polyester (UPE) multifunctional targeting nanoparticle (MTN) scaffold system with dual ligands: (1) glycoprotein 1b (GP1b) to target the injured arterial endothelium and subendothelium and (2) anti-CD34 antibodies to capture endothelial progenitor cells for endothelium regeneration. The fabricated spherical MTNs of 400 nm were found to be cytocompatible and hemocompatible. Both the in vitro and ex vivo targeting of these nanoscaffolds not only showed binding specificity of MTNs onto the von Willebrand factor -coated surfaces that simulate the injured arterial walls but also competed with platelets for binding onto these injured sites. Further in vivo study has revealed that a single delivery of MTNs upon vascular injury reduced neointimal hyperplasia by 57% while increased endothelium regeneration by ∼ 60% in 21 days. These results support the promise of using MTN nanoscaffolds for treating vascular injury in situ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of Protein Kinase G (PKG) Reduces Neointimal Hyperplasia, Inhibits Platelet Aggregation, and Facilitates Re-endothelialization

In spite of its great success in reducing restenosis, drug-eluting stent (DES) has unfavorable aspects such as stent thrombosis and delayed re-endothelialization. We examined the effects of PKG activation by Exisulind on neointimal formation, platelet aggregation, and re-endothelialization. Exisulind significantly reduced VSMCs viability, cell cycle progression, migration, and neointimal hyperp...

متن کامل

Multifunctional RNA Nanoparticles

Our recent advancements in RNA nanotechnology introduced novel nanoscaffolds (nanorings); however, the potential of their use for biomedical applications was never fully revealed. As presented here, besides functionalization with multiple different short interfering RNAs for combinatorial RNA interference (e.g., against multiple HIV-1 genes), nanorings also allow simultaneous embedment of assor...

متن کامل

Multifunctional Gold-Mesoporous Silica Nanocomposites for Enhanced Two-Photon Imaging and Therapy of Cancer Cells

Three dimensional sub-micron resolution has made two-photon nanomedicine a very promising medical tool for cancer treatment since current techniques cause significant side effects for lack of spatial selectivity. Two-photon-excited (TPE) photodynamic therapy (PDT) has been achieved via mesoporous nanoscaffolds, but the efficiency of the treatment could still be improved. Herein, we demonstrate ...

متن کامل

Halofuginone stimulates adaptive remodeling and preserves re-endothelialization in balloon-injured rat carotid arteries.

BACKGROUND Three major processes, constrictive vessel remodeling, intimal hyperplasia (IH), and retarded re-endothelialization, contribute to restenosis after vascular reconstructions. Clinically used drugs inhibit IH but delay re-endothelialization and also cause constrictive remodeling. Here we have examined halofuginone, an herbal derivative, for its beneficial effects on vessel remodeling a...

متن کامل

Optimizing Recellularization of Whole Decellularized Heart Extracellular Matrix

RATIONALE Perfusion decellularization of cadaveric hearts removes cells and generates a cell-free extracellular matrix scaffold containing acellular vascular conduits, which are theoretically sufficient to perfuse and support tissue-engineered heart constructs. However, after transplantation, these acellular vascular conduits clot, even with anti-coagulation. Here, our objective was to create a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014